Metabolic Phenotyping and Systems Biology Approaches to Understanding Metabolic Syndrome and Fatty Liver Disease - Gastroenterology

Metabolic syndrome, a cluster of risk factors for type 2 diabetes mellitus and cardiovascular disease, is becoming an increasing global health concern. Insulin resistance is often associated with metabolic syndrome and also typical hepatic manifestations such as nonalcoholic fatty liver disease. Profiling of metabolic products (metabolic phenotyping or metabotyping) has provided new insights into metabolic syndrome and nonalcoholic fatty liver disease. Data from nuclear magnetic resonance spectroscopy and mass spectrometry combined with statistical modeling and top-down systems biology have allowed us to analyze and interpret metabolic signatures in terms of metabolic pathways and protein interaction networks and to identify the genomic and metagenomic determinants of metabolism. For example, metabolic phenotyping has shown that relationships between host cells and the microbiome affect development of the metabolic syndrome and fatty liver disease. We review recent developments in metabolic phenotyping and systems biology technologies and how these methodologies have provided insights into the mechanisms of metabolic syndrome and nonalcoholic fatty liver disease. We discuss emerging areas of research in this field and outline our vision for how metabolic phenotyping could be used to study metabolic syndrome and fatty liver disease.

Background: Roux-en-Y gastric bypass (RYGB) surgery is one of the most efficient procedures for treating morbid obesity and results in weight-loss and improvements in metabolism and inflammation.

Objective: We examined the impact of RYGB on modifications of gut microbiota and its potential associations with changes in gene expression in white adipose tissue (WAT).


Recent metagenomic studies have demonstrated that the overall functional potential of the intestinal microbiome is rather conserved between healthy individuals. Here we assessed the biological processes undertaken in-vivo by microbes and the host in the intestinal tract by conducting a metaproteome analysis from a total of 48 faecal samples of 16 healthy adults participating in a placebo-controlled probiotic intervention trial. Half of the subjects received placebo and the other half consumed

Lactobacillus rhamnosus

GG for three weeks (10


cfu per day). Faecal samples were collected just before and at the end of the consumption phase as well as after a three-week follow-up period, and were processed for microbial composition and metaproteome analysis. A common core of shared microbial protein functions could be identified in all subjects. Furthermore, we observed marked differences in expressed proteins between subjects that resulted in the definition of a stable and personalized microbiome both at the mass-spectrometry-based proteome level and the functional level based on the KEGG pathway analysis. No significant changes in the metaproteome were attributable to the probiotic intervention. A detailed taxonomic assignment of peptides and comparison to phylogenetic microarray data made it possible to evaluate the activity of the main phyla as well as key species, including

Faecalibacterium prausnitzii

. Several correlations were identified between human and bacterial proteins. Proteins of the human host accounted for approximately 14% of the identified metaproteome and displayed variations both between and within individuals. The individually different human intestinal proteomes point to personalized host-microbiota interactions. Our findings indicate that analysis of the intestinal metaproteome can complement gene-based analysis and contributes to a thorough understanding of the activities of the microbiome and the relevant pathways in health and disease.


The human gut harbors more than 100 trillion microbial cells, which have an essential role in human metabolic regulation via their symbiotic interactions with the host. Altered gut microbial ecosystems have been associated with increased metabolic and immune disorders in animals and humans. Molecular interactions linking the gut microbiota with host energy metabolism, lipid accumulation, and immunity have also been identified. However, the exact mechanisms that link specific variations in the composition of the gut microbiota with the development of obesity and metabolic diseases in humans remain obscure owing to the complex etiology of these pathologies. In this review, we discuss current knowledge about the mechanistic interactions between the gut microbiota, host energy metabolism, and the host immune system in the context of obesity and metabolic disease, with a focus on the importance of the axis that links gut microbes and host metabolic inflammation. Finally, we discuss therapeutic approaches aimed at reshaping the gut microbial ecosystem to regulate obesity and related pathologies, as well as the challenges that remain in this area.


Fecal microbiome variation in the average, healthy population has remained under-investigated. Here, we analyzed two independent, extensively phenotyped cohorts: the Belgian Flemish Gut Flora Project (FGFP; discovery cohort; N = 1106) and the Dutch LifeLines-DEEP study (LLDeep; replication; N = 1135). Integration with global data sets (Ncombined = 3948) revealed a 14-genera core microbiota, but the 664 identified genera still underexplore total gut diversity. Sixty-nine clinical and questionnaire-based covariates were found associated to microbiota compositional variation with a 92% replication rate. Stool consistency showed the largest effect size, whereas medication explained largest total variance and interacted with other covariate-microbiota associations. Early-life events such as birth mode were not reflected in adult microbiota composition. Finally, we found that proposed disease marker genera associated to host covariates, urging inclusion of the latter in study design.

Go to top
JSN Blank template designed by JoomlaShine.com

Our site uses cookies. We'll assume that you are OK with this if you browse further. To find out more about the cookies we use, see our Cookie Policy.

I accept cookies from this site